N9010B EXA X-Series
 Signal Analyzer, Multi-touch

10 Hz to 3.6, 7.0, 13.6, 26.5, 32, or 44 GHz

Table of Contents

Definitions and Conditions 3
Frequency and Time Specifications 4
Amplitude Accuracy and Range Specifications. 6
Dynamic Range Specifications 9
PowerSuite Measurement Specifications 14
General Specifications 15
Inputs and Outputs 16
I/Q Analyzer 18
Related Literature 20

This data sheet is a summary of the specifications and conditions for EXA signal analyzers. For the complete specifications guide, visit: www.keysight.com/find/exa_specifications

Cost-Effective

Millimeter-Wave Signal Analysis

Whether you're focused on time-tomarket, time-to-volume, or cost of test, your choice of economy class signal analyzer should help you save both time and money. That's the idea that drives the Keysight Technologies, Inc. EXA signal analyzer-your first, best choice when you need maximum value in signal analysis up to millimeterwave frequencies. It helps you find the answer faster, whether you're seeking tighter design margins or shorter test times.

Definitions and Conditions

Specifications describe the performance of parameters covered by the product warranty and apply to the full temperature range of 0 to $55^{\circ} \mathrm{C}$, unless otherwise noted.

95th percentile values indicate the breadth of the population (approx. 2 s) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to $30^{\circ} \mathrm{C}$. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.

Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to $30^{\circ} \mathrm{C}$. Typical performance does not include measurement uncertainty.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but are not covered by the product warranty.

The analyzer will meet its specifications when:

- It is within its calibration cycle
- Under auto couple control, except when Auto Sweep Time Rules = Accy
- Signal frequencies < 10 MHz , with DC coupling applied
- The analyzer has been stored at an ambient temperature within the allowed operating range for at least two hours before being turned on; if it had previously been stored at a temperature range inside the allowed storage range, but outside the allowed operating range
- The analyzer has been turned on at least 30 minutes with Auto Align set to Normal, or if Auto Align is set to Off or Partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from "Time and Temperature" to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user. If Auto Align is set to Light, performance is not warranted, and nominal performance will degrade to become a factor of 1.4 wider for any specification subject to alignment, such as amplitude tolerances

Get More Information

This EXA signal analyzer data sheet is a summary of the specifications and conditions for N9010B EXA signal analyzers. A full set of specifications are available in the EXA Signal Analyzer Specification Guide at www.keysight.com/find/ exa_specifications.

For ordering information, refer to the N9010B EXA Signal Analyzer Configuration Guide literature number (5992-1253EN).

Frequency and Time Specifications

[^0]| Sweep time and triggering | | |
| :---: | :---: | :---: |
| Range | Span $=0 \mathrm{~Hz}$ | 1μ s to 6000 s |
| | Span $\geq 10 \mathrm{~Hz}$ | 1 ms to 4000 s |
| Accuracy | Span $\geq 10 \mathrm{~Hz}$, swept | $\pm 0.01 \%$ nominal |
| | Span $\geq 10 \mathrm{~Hz}, \mathrm{FFT}$ | $\pm 40 \%$ nominal |
| | Span $=0 \mathrm{~Hz}$ | $\pm 0.01 \%$ nominal |
| Trigger | Free run, line, video, external 1, external 2, RF burst, periodic timer | |
| Trigger Delay | Span $=0 \mathrm{~Hz}$ or FFT | -150 to +500 ms |
| | Span $\geq 10 \mathrm{~Hz}$, swept | 0 to 500 ms |
| | Resolution | $0.1 \mu \mathrm{~s}$ |
| Time gating | | |
| Gate methods | Gated LO; gated video; gated FFT | |
| Gate length range (except method = FFT) | 100.0 ns to 5.0 s | |
| Gate delay range | 0 to 100.0 s | |
| Gate delay jitter | 33.3 ns p-p nominal | |
| Sweep (trace) point range | | |
| All spans | 1 to 100,001 | |
| Resolution bandwidth (RBW) | | |
| Range (-3.01 dB bandwidth) | 1 Hz to 3 MHz (10\% steps), 4, 5, 6, 8 MHz | |
| Bandwidth accuracy (power) | 1 Hz to 750 kHz | $\pm 1.0 \%(\pm 0.044 \mathrm{~dB})$ |
| | 820 kHz to 1.2 MHz (< 3.6 GHz CF) | $\pm 2.0 \%(\pm 0.088 \mathrm{~dB})$ |
| | 1.3 to 2 MHz ($<3.6 \mathrm{GHz} \mathrm{CF}$) | $\pm 0.07 \mathrm{~dB}$ nominal |
| | 2.2 to $3 \mathrm{MHz}(<3.6 \mathrm{GHz} \mathrm{CF})$ | 0 to -0.2 dB nominal |
| | 4 to 8 MHz (<3.6 GHz CF) | 0 to -0.4 dB nominal |
| Bandwidth accuracy (-3.01 dB) | | |
| Selectivity ($-60 \mathrm{~dB} /-3 \mathrm{~dB}$) | 4.1:1 nominal | |
| EMI bandwidth (CISPR compliant) | $200 \mathrm{~Hz}, 9 \mathrm{kHz}, 120 \mathrm{kHz}, 1 \mathrm{MHz}$ | (Option EMC required) |
| EMI bandwidth (MIL STD 461E compliant) | $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}, 100 \mathrm{kHz}, 1 \mathrm{MHz}$ | (Option EMC required) |
| Analysis bandwidth ${ }^{1}$ | | |
| Maximum bandwidth | Option B40 | 40 MHz |
| | Standard | 25 MHz |
| Video bandwidth (VBW) | | |
| Range | 1 Hz to 3 MHz (10% steps), 4, 5, 6, 8 MHz , and wide open (labeled 50 MHz) | |
| Accuracy | $\pm 6 \%$ nominal | |

1. Analysis bandwidth is the instantaneous bandwidth available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain.

Amplitude Accuracy and Range Specifications

Amplitude range	
Measurement range	Displayed average noise level (DANL) to +23 dBm
Input attenuator range (10 Hz to 44 GHz) - Standard	0 to 60 dB in 10 dB steps
Electronic attenuator (Option EA3)	
Frequency range	10 Hz to 3.6 GHz
Attenuation range	
- Full attenuation range (mechanical + electronic)	0 to $84 \mathrm{~dB}, 1 \mathrm{~dB}$ steps
Maximum safe input level	
Average total power (with and without preamp)	+30 dBm (1 W)
Peak pulse power	< 10μ s pulse width, < 1% duty cycle +50 dBm (100 W) and input attenuation $\geq 30 \mathrm{~dB}$
DC volts	
- DC coupled	$\pm 0.2 \mathrm{Vdc}$
	$\pm 100 \mathrm{Vdc}$
Display range	
Log scale	0.1 to $1 \mathrm{~dB} /$ division in 0.1 dB steps
	1 to $20 \mathrm{~dB} /$ division in 1 dB steps (10 display divisions)
Linear scale	10 divisions
Scale units	dBm, dBmV, dB $\mu \mathrm{V}, \mathrm{dBmA}, \mathrm{dB} \mu \mathrm{A}, \mathrm{V}, \mathrm{W}, \mathrm{A}$

Frequency response$\left(10 \mathrm{~dB}\right.$ input attenuation, 20 to $30^{\circ} \mathrm{C}$, preselector centering applied, $\sigma=$ nominal standard deviation) \quad 95th percentile $\approx \approx 2 \sigma$)			
RF/MW (Option 503, 507, 513, 526)	9 kHz to 10 MHz	$\pm 0.8 \mathrm{~dB}$	$\pm 0.4 \mathrm{~dB}$
	$10 \mathrm{MHz}^{1}$ to 3.6 GHz	$\pm 0.6 \mathrm{~dB}$	$\pm 0.21 \mathrm{~dB}$
	3.5 to 7.0 GHz	$\pm 2.0 \mathrm{~dB}$	$\pm 0.69 \mathrm{~dB}$
	7.0 to 13.6 GHz	$\pm 2.5 \mathrm{~dB}$	$\pm 0.48 \mathrm{~dB}$
	13.5 to 22.0 GHz	$\pm 3.0 \mathrm{~dB}$	$\pm 0.79 \mathrm{~dB}$
	22.0 to 26.5 GHz	$\pm 3.2 \mathrm{~dB}$	$\pm 1.10 \mathrm{~dB}$
Millimeter-wave (Option 532, 544)	9 kHz to 10 MHz	$\pm 0.6 \mathrm{~dB}$	$\pm 0.28 \mathrm{~dB}$
	10 to 50 MHz	$\pm 0.45 \mathrm{~dB}$	$\pm 0.21 \mathrm{~dB}$
	50 MHz to 3.6 GHz	$\pm 0.45 \mathrm{~dB}$	$\pm 0.20 \mathrm{~dB}$
	3.5 to 5.2 GHz	$\pm 1.7 \mathrm{~dB}$	$\pm 0.91 \mathrm{~dB}$
	5.2 to 8.4 GHz	$\pm 1.5 \mathrm{~dB}$	$\pm 0.61 \mathrm{~dB}$
	8.3 to 13.6 GHz	$\pm 2.0 \mathrm{~dB}$	$\pm 0.61 \mathrm{~dB}$
	13.5 to 17.1 GHz	$\pm 2.0 \mathrm{~dB}$	$\pm 0.67 \mathrm{~dB}$
	17.0 to 22.0 GHz	$\pm 2.0 \mathrm{~dB}$	$\pm 0.78 \mathrm{~dB}$
	22.0 to 26.5 GHz	$\pm 2.5 \mathrm{~dB}$	$\pm 0.72 \mathrm{~dB}$
	26.4 to 34.5 GHz	$\pm 2.5 \mathrm{~dB}$	$\pm 1.11 \mathrm{~dB}$
	34.4 to 44 GHz	$\pm 3.2 \mathrm{~dB}$	$\pm 1.42 \mathrm{~dB}$
Preamp on (P03, P07, P13, P26)			
RF/MW (Option 503, 507, 513, 526)	100 kHz to 3.6 GHz		$\pm 0.28 \mathrm{~dB}$ nominal
	3.6 to 7.0 GHz		$\pm 0.67 \mathrm{~dB}$ nominal
	7.0 to 26.5 GHz		$\pm 0.80 \mathrm{~dB}$ nominal
Preamp on (P03, P07, P32, P44)			
Millimeter-wave (Option 532, 544)	100 kHz to 3.6 GHz		$\pm 0.28 \mathrm{~dB}$ nominal
	3.5 to 8.4 GHz		$\pm 0.67 \mathrm{~dB}$ nominal
	8.4 to 26.5 GHz		$\pm 0.80 \mathrm{~dB}$ nominal
	26.4 to 44 GHz		$\pm 0.80 \mathrm{~dB}$ nominal

1. DC coupling required to meet specifications below 50 MHz . With AC coupling, specifications apply at frequencies of 50 MHz and higher. Statistical observations at 10 MHz with AC coupling show that most instruments meet the DC-coupled specifications, however, a small percentage of instruments are expected to have errors exceeding 0.5 dB at 10 MHz at the temperature extreme. The effect at 20 to 50 MHz is negligible but not warranted.

| Input attenuation switching uncertainty | Specifications | Additional information |
| :--- | :--- | :--- | :--- |
| Attenuation $>2 \mathrm{~dB}$, preamp off 50 MHz (reference frequency) $\pm 0.20 \mathrm{~dB}$ | $\pm 0.08 \mathrm{~dB}$ typical | |
| Relative to 10 dB | | $\pm 0.3 \mathrm{~dB}$ nominal |
| (reference setting) | 9 kHz to 3.6 GHz | $\pm 0.5 \mathrm{~dB}$ nominal |
| | $\frac{3.5 \text { to } 7.0 \mathrm{GHz}}{6.9 \text { to } 13.6 \mathrm{GHz}}$ | $\pm 0.7 \mathrm{~dB}$ nominal |
| 13.5 to 26.5 GHz | $\pm 0.7 \mathrm{~dB}$ nominal | |
| $>26.5 \mathrm{GHz}$ | $\pm 1.0 \mathrm{~dB}$ nominal | |

Total absolute amplitude accuracy

(10 dB attenuation, 20 to $30^{\circ} \mathrm{C}, 1 \mathrm{~Hz} \leq \mathrm{RBW} \leq 1 \mathrm{MHz}$, input signal -10 to -50 dBm , all settings auto-coupled except Auto Swp Time = Accy, any reference level, any scale, $\sigma=$ nominal standard deviation)

	At 50 MHz	$\pm 0.40 \mathrm{~dB}$
	At all frequencies	$\pm(0.40 \mathrm{~dB}+$ frequency response)
9 kHz to 3.6 GHz	\pm 0.27 dB (95th percentile $\approx 2 \sigma)$	
Preamp on	100 kHz to 3.6 GHz	$\pm(0.39 \mathrm{~dB}+$ frequency response)

Input voltage standing wave ratio (VSWR) ($\geq 10 \mathrm{~dB}$ input attenuation)
Options 503,507,513,526 Options 532,544

10 MHz to 3.6 GHz	$<1.2: 1$ nominal	$1.2: 1$ nominal
3.6 to 26.5 GHz	$<1.9: 1$ nominal	$1.5: 1$ nominal
26.5 to 44 GHz	N / A	$<1.8: 1$ nominal

Resolution bandwidth switching uncertainty (referenced to 30 kHz RBW)

1 Hz to 3 MHz RBW	$\pm 0.10 \mathrm{~dB}$
$4,5,6,8 \mathrm{MHz}$ RBW	$\pm 1.0 \mathrm{~dB}$

Reference level

Range

- Log scale	-170 to +23 dBm in 0.01 dB steps
- Linear scale	Same as Log (707 pV to 3.16 V$)$
Accuracy	0 dB

Display scale switching uncertainty

Switching between linear and log	0 dB
Log scale/div switching	0 dB

Display scale fidelity

Between -10 dBm and $-80 \mathrm{dBm} \quad \pm 0.15 \mathrm{~dB}$ total
input mixer level

Trace detectors

Normal, peak, sample, negative peak, log power average, RMS average, and voltage average
Preamplifier (Option P03, P07, P13, P26, P32, P44)

Frequency range	Option P03	100 kHz to 3.6 GHz
	Option P07	100 kHz to 7 GHz
	Option P13	100 kHz to 13.6 GHz
	Option P26	100 kHz to 26.5 GHz
	Option P32	100 kHz to 32 GHz
	Option P44	100 kHz to 44 GHz
Gain	100 kHz to 3.6 GHz	+20 dB nominal
	3.6 to 7.0 GHz	+35 dB nominal
	$>7 \mathrm{GHz}$	+40 dB nominal
Noise figure	100 kHz to 3.6 GHz	8 to 12 dB nominal (proportional to frequency)
	3.6 to 8.4 GHz	9 dB nominal
	8.4 to 13.6 GHz	10 dB nominal
	> 13.6 GHz	DANL + 176.24 dB nominal

Dynamic Range Specifications

1. Without Option B40, DP2, or MPB. When any of these options are installed, performance may change. Please refer to the EXA specifications guide for more details.
Displayed average noise level (DANL) (Continued)
Preamp on, millimeter-wave

(Option 532, 544) \quad| 100 kHz to 1 MHz | -145 dBm | -148 dBm |
| :--- | :--- | :--- |
| 1 to 10 MHz | -161 dBm | -165 dBm |
| | 10 MHz to 1.2 GHz | -164 dBm |
| 1.2 to 2.1 GHz | -163 dBm | -165 dBm |
| 2.1 to 3.6 GHz | -162 dBm | -163 dBm |
| 3.5 to 7 GHz | -160 dBm | -162 dBm |
| 7 to 20 GHz | -160 dBm | -162 dBm |
| 20 to 26.5 GHz | -158 dBm | -160 dBm |
| 26.5 to 32 GHz | -156 dBm | -159 dBm |
| 32 to 34 GHz | -156 dBm | -159 dBm |
| 33.9 to 40 GHz | -153 dBm | -155 dBm |
| 40 to 44 GHz | -149 dBm | -153 dBm |

DANL with Noise Floor Extension Improvement (Option NF2)

DANL improvement exceeds 7 dB with 95% confidence in the average of all bands, with and without the preamplifier

RF/MW (Option 503, 507, 513, 526)

Example of effective DANL at 18 to $30^{\circ} \mathrm{C}$

Frequency	Preamp Off	Preamp On
Mid-Band $0(1.8 \mathrm{GHz})$	-156 dBm	-170 dBm
Mid-Band $1(5.9 \mathrm{GHz})$	-155 dBm	-168 dBm
Mid-Band 2 $(10.95 \mathrm{GHz})$	-153 dBm	-168 dBm
Mid-Band $3(15.3 \mathrm{GHz})$	-147 dBm	-165 dBm
Mid-Band $4(21.75 \mathrm{GHz})$	-145 dBm	-157 dBm

Millimeter-Wave (Option 532, 544) ${ }^{\mathbf{1}}$		
Example of effective DANL at $\mathbf{1 8}$ to $\mathbf{3 0}{ }^{\circ} \mathrm{C}$		
Frequency	Preamp Off	Preamp On
Mid-Band $0(1.8 \mathrm{GHz})$	-157 dBm	-169 dBm
Mid-Band $1(5.9 \mathrm{GHz})$	-152 dBm	-166 dBm
Mid-Band 2 $(10.95 \mathrm{GHz})$	-154 dBm	-165 dBm
Mid-Band $3(15.3 \mathrm{GHz})$	-153 dBm	-164 dBm
Mid-Band $4(21.75 \mathrm{GHz})$	-148 dBm	-164 dBm
Mid-Band $5(30.4 \mathrm{GHz})$	-145 dBm	-160 dBm
Mid-Band 6 $(42.7 \mathrm{GHz})$	-142 dBm	-154 dBm

1. Without Option B40, DP2, or MPB. When any of these options are installed, performance may change. Please refer to the EXA specifications guide for more details.

Spurious responses			
Residual responses (input terminated and 0 dB attenuation)	200 kHz to 8.4 GHz (swept)	$-100 \mathrm{dBm}$	
	Zero span or FFT or other frequencies	-100 dBm nominal	
	Tuned frequency (f)	Mixer level	Response
Image responses	10 MHz to 3.6 GHz	-10 dBm	-80 dBc (-107 dBc typical)
(Excitation freq. $=\mathrm{f}+645 \mathrm{MHz}$)	3.6 to 13.6 GHz	$-10 \mathrm{dBm}$	-75 dBc (-87 dBc typical)
	13.6 to 17.1 GHz	$-10 \mathrm{dBm}$	-71 dBc (-85 dBc typical)
	17.1 to 22 GHz	$-10 \mathrm{dBm}$	-68 dBc (-82 dBc typical)
	22 to 26.5 GHz	$-10 \mathrm{dBm}$	-66 dBc (-78 dBc typical)
	26.5 to 34.5 GHz	-30 dBm	-70 dBc (-94 dBc typical)
	34.5 to 44 GHz	-30 dBm	-60 dBc (-79 dBc typical)
LO related spurious (f > 600 MHz from carrier, 10 MHz to 3.6 GHz)	10 MHz to 3.6 GHz		$-90 \mathrm{dBc}+20 \log { }^{1}$ typical
Other spurious response	Mixer level	Response	
Carrier frequency $\leq 26.5 \mathrm{GHz}$			
- First RF order (f $\geq 10 \mathrm{MHz}$ from carrier)	-10 dBm	$-68 \mathrm{dBc}+20 \log \left(\mathrm{~N}^{1}\right)$ Including IF feedthrough, LO harmonic mixing responses	
- Higher RF order ($\mathrm{f} \geq 10 \mathrm{MHz}$ from carrier)	-40 dBm	$-80 \mathrm{dBc}+20 \log \left(\mathrm{~N}^{1}\right)$ Including higher order mixer responses	
Carrier frequency > 26.5 GHz			
- First RF order ($\mathrm{f} \geq 10 \mathrm{MHz}$ from carrier)	$-30 \mathrm{dBm}$	-90 dBc nominal	
- Higher RF order ($\mathrm{f} \geq 10 \mathrm{MHz}$ from carrier)	-30 dBm	-90 dBc nominal	

1. N is the $L O$ multiplication factor.

Second harmonic distortion (SHI)			
	Source frequency	SHI (nominal)	
RF/MW (Option 503, 507, 513, 526)	10 MHz to 1.8 GHz	+45 dBm	
	1.75 to 7.0 GHz	$+65 \mathrm{dBm}$	
	7.0 to 11.0 GHz	$+55 \mathrm{dBm}$	
	11.0 to 13.25 GHz	+50 dBm	
Millimeter-wave (Option 532, 544)	10 MHz to 1.8 GHz	$+45 \mathrm{dBm}$	
	1.8 to 6.5 GHz	$+65 \mathrm{dBm}$	
	6.5 to 10 GHz	+60 dBm	
	10 to 13.25 GHz	+55 dBm	
	13.25 to 22 GHz	+50 dBm	
Third-order intermodulation distortion (TOI)			
(Two -18 dBm tones at input mixer with tone separation > 5 times IF prefilter bandwidth, 20 to $30^{\circ} \mathrm{C}$, see Specifications Guide for IF prefilter bandwidths)			
		TOI	TOI (typical)
RF/MW (Option 503, 507, 513, 526)	100 to 400 MHz	$+13 \mathrm{dBm}$	$+17 \mathrm{dBm}$
	400 MHz to 3.6 GHz	+14 dBm	+18 dBm
	3.6 to 13.6 GHz	+14 dBm	+18 dBm
	13.6 to 26.5 GHz	+12 dBm	+16 dBm
Preamp on, RF/MW (Option 503, 507, 513, 526)	30 MHz to 3.6 GHz (two -45 dBm tones at preamp)		0 dBm nominal
	3.6 to 26.5 GHz (two -50 dBm tones at preamp)		-18 dBm nominal
Millimeter-wave (Option 532, 544)	10 to 100 MHz	+12 dBm	+17 dBm
	100 MHz to 3.95 GHz	+15dBm	+19 dBm
	3.95 to 8.4 GHz	+15dBm	+18 dBm
	8.3 to 13.6 GHz	+15 dBm	+18 dBm
	13.5 to 17.1 GHz	$+11 \mathrm{dBm}$	$+17 \mathrm{dBm}$
	17.0 to 26.5 GHz	+10 dBm	+17 dBm (nominal)
	26.5 to 44 GHz	-	+13 dBm (nominal)
Preamp on, millimeter-wave	30 MHz to 3.6 GHz (two -45 dBm tones at preamp)		0 dBm (nominal)
(Option 532, 544)	3.6 to 26.5 GHz (two -50 dBm tones at preamp)		-18 dBm (nominal)

Phase noise	Offset	Specification	Typical
Noise sidebands			
$\left(20\right.$ to $\left.30^{\circ} \mathrm{C}, \mathrm{CF}=1 \mathrm{GHz}\right)$	100 Hz	$-87 \mathrm{dBc} / \mathrm{Hz}$	$-102 \mathrm{dBc} / \mathrm{Hz}$
	1 kHz	-	$-110 \mathrm{dBc} / \mathrm{Hz}$ nominal
	10 kHz	$-107 \mathrm{dBc} / \mathrm{Hz}$	$-109 \mathrm{dBc} / \mathrm{Hz}$
100 kHz	$-115 \mathrm{dBc} / \mathrm{Hz}$	$-118 \mathrm{dBc} / \mathrm{Hz}$	
	1 MHz	$-134 \mathrm{dBc} / \mathrm{Hz}$	$-136 \mathrm{dBc} / \mathrm{Hz}$

Figure 1. Nominal phase noise at different center frequencies.

Option MPB, microwave preselector bypass ${ }^{1}$
Frequency range

N9010B-507	3.6 to 7 GHz
N9010B-513	3.6 to 13.6 GHz
N9010B-526	3.6 to 26.5 GHz
N9010B-532	3.6 to 32 GHz
N9010B-544	3.6 to 44 GHz

[^1]
PowerSuite Measurement Specifications

Channel power		
Amplitude accuracy, W-CDMA or IS95 (20 to $30^{\circ} \mathrm{C}$, attenuation $=10 \mathrm{~dB}$)	$\pm 1.04 \mathrm{~dB}(\pm$	
Occupied bandwidth		
Frequency accuracy	$\pm[$ span/1000] nominal	
Adjacent channel power		
	Adjacent	Alternate
Accuracy, W-CDMA (ACLR) (at specific mixer levels and ACLR ranges)		
- MS	$\pm 0.17 \mathrm{~dB}$	$\pm 0.22 \mathrm{~dB}$
- BTS	$\pm 0.70 \mathrm{~dB}$	$\pm 0.57 \mathrm{~dB}$
Dynamic range (typical)		
- Without noise correction	$-68 \mathrm{~dB}$	$-74 \mathrm{~dB}$
- With noise correction	$-73 \mathrm{~dB}$	$-76 \mathrm{~dB}$
Offset channel pairs measured	1 to 6	
ACP measurement and transfer time (fast method)	10 ms nomi	
Multiple number of carriers measured	Up to 12	
Power statistics CCDF		
Histogram resolution	0.01 dB	
Harmonic distortion		
Maximum harmonic number	10th	
Result	Fundamental power (dBm), relative harmonics power (dBc), total harmonic distortion in \%	
Intermod (TOI)	Measure the third-order products and intercepts from two tones	
Burst power		
Methods	Power above threshold, power within burst width	
Results	Single burst output power, average output power, maximum power, minimum power within burst, burst width	
Spurious emission		
W-CDMA (1 to 3.6 GHz) table-driven spurious signals; search across regions		
Dynamic range	80.4 dB	82.9 dB typical
Absolute sensitivity	-82.5 dBm	-86.5 dBm typical
Spectrum emission mask (SEM)		
cdma2000® ${ }^{\text {(} 750 \mathrm{kHz} \text { offset) }}$		
- Relative dynamic range (30 kHz RBW)	76.2 dB	82.8 dB typical
- Absolute sensitivity	-97.7 dBm	-101.7 dBm typical
- Relative accuracy	$\pm 0.12 \mathrm{~dB}$	
3GPP W-CDMA (2.515 MHz offset)		
- Relative dynamic range (30 kHz RBW)	79.3 dB	84.9 dB typical
- Absolute sensitivity	-97.7 dBm	-101.7 dBm typical
- Relative accuracy	$\pm 0.15 \mathrm{~dB}$	

General Specifications

Temperature range

Operating	0 to $55^{\circ} \mathrm{C}$
Storage	-40 to $70^{\circ} \mathrm{C}$
EMC	

Complies with the essential requirements of the European EMC Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity):

- IEC/EN 61326-1 or IEC/EN 61326-2-1
- CISPR 11 Group 1, Class A
- AS/NZS CISPR 11:2002
- ICES/NMB-001

This ISM device complies with Canadian ICES-001
Cet appareil ISM est conforme à la norme NMB-001 du Canada

Safety

Complies with European Low Voltage Directive 2006/95/EC

- IEC/EN 61010-1 3rd Edition
- Canada: CSA C22.2 No. 61010-1-12
- U.S.A.: UL 61010-1 3rd Edition

Acoustic statement (European Machinery Directive 2002/42/EC, 1.7.4.2u)
Acoustic noise emission

$\mathrm{LpA}<70 \mathrm{~dB}$
Operator position

Normal position
Per ISO 7779

Environmental stress

Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include, but are not limited to, temperature, humidity, shock, vibration, altitude, and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar to MILPRF-28800F Class 3.

Power requirements

Inputs and Outputs

Front panel	
RF input connector	
- Standard (Option 503, 507, 513, or 526)	Type-N female, 50Ω nominal
- Standard (Option 532 or 544)	2.4 mm male, 50Ω nominal
Probe power	
- Voltage/current	$+15 \mathrm{Vdc}, \pm 7 \%$ at 150 mA max nominal
	$-12.6 \mathrm{Vdc}, \pm 10 \%$ at 150 mA max nominal
USB ports	
- Host (3 ports)	
- Standard	Compatible with USB 2.0
- Connector	USB Type-A female
- Output current	
- Port marked with lightning bolt	1.2 A nominal
- Ports not marked with lightning bolt	0.5 A nominal
External mixing, Option EXM (available only with EXA millimeter wave, Option 532 or 544)	
Connection port	
- Connector	SMA, female
- Impedance	50Ω nominal
- Functions	Triplexed for mixer bias, IF input and LO output
Mixer bias range	$\pm 10 \mathrm{~mA}$ in $10 \mu \mathrm{~A}$ step
IF input center frequency	
- Narrowband IF path	322.5 MHz
- 40 MHz IF path	250 MHz
LO output frequency range	3.75 to 14.0 GHz
Rear panel	
10 MHz out	
- Connector	BNC female, 50Ω nominal
- Output amplitude	$\geq 0 \mathrm{dBm}$ nominal
- Frequency	$10 \mathrm{MHz} \pm$ (10 MHz x frequency reference accuracy)
Ext Ref In	
- Connector	BNC female, 50Ω nominal
	-5 to 10 dBm nominal
- Input frequency	10 MHz nominal
- Frequency lock range	$\pm 5 \times 10^{-6}$ of specified external reference input frequency
Trigger 1 and 2 inputs	
- Connector	BNC female
- Impedance	$>10 \mathrm{k} \Omega$ nominal
- Trigger level range	-5 to 5V
Trigger 1 and 2 outputs	
- Connector	BNC female
- Impedance	50Ω nominal
- Level	5 V TTL nominal
Monitor output	
- Connector	VGA compatible, 15-pin mini D-SUB
- Format	XGA (60 Hz vertical sync rates, non-interlaced) analog RGB
- Resolution	1024×768

Rear panel

Noise source drive +28 V (pulsed) - Connector	BNC female
SNS Series noise source connector	For use with Keysight SNS Series noise sources
Analog out - Connector	BNC female (used with N9063A analog demod app and Option YAS)
USB ports - Host, super speed 2 ports - Compatibility - Connector - Output current	USB 3.0 USB Type-A female 0.9 A nominal
- Host, stacked with LAN - Compatibility - Connector - Output current	1 port USB 2.0 USB Type A female 0.5 A nominal
- Device - Standard - Connector - Output current	1 port USB 3.0 USB Type-B female 0.9 A nominal
GPIB interface - Connector - GPIB codes - GPIB mode	IEEE-488 bus connector SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0 Controller or device
LAN TCP/IP interface - Standard - Connector	$\frac{\text { 1000Base-T }}{\text { RJ45 Ethertwist }}$

IF output

- Connector SMA female, shared by Option CR3 and CRP
- Impedance
50Ω nominal

Wideband IF output, Option CR3

Center frequency

- SA mode or I/Q analyzer with IF BW $\leq 25 \mathrm{MHz}$ with Option B40	322.5 MHz
	250 MHz
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth - Low band	Up to 140 MHz (nominal)
- High band, with preselector	Depends on center frequency
- High band, with preselector bypassed ${ }^{1}$	Up to 410 MHz (nominal)

Programmable IF output, Option CRP

Center frequency

- Range	10 to 75 MHz (user selectable)
- Resolution	0.5 MHz
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth	
Output at 70 MHz center	
- Low band or high band with preselector bypassed ${ }^{1}$	100 MHz (nominal)
- Preselected band	Depends on RF center frequency
Lower output frequencies	Subject to folding
Residual output signals	$\leq-88 \mathrm{dBm}$ (nominal)

[^2]
I/Q Analyzer

Frequency

Frequency span

- Standard
- Option B25 (standard)

Hz
10 Hz to 25 MHz
0 Hz to 40

Resolution bandwidth (spectrum measurement)

Range

- Overall

100 MHz to 3 MHz

- Span $=1 \mathrm{MHz}$

50 Hz to 1 MHz

- Span = 10 kHz
$\frac{1 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}}{100 \mathrm{MHz} \text { to } 100 \mathrm{~Hz}}$

Window shapes

Flat top, Uniform, Hanning, Gaussian, Blackman, Blackman-Harris, Kaiser Bessel (K-B $70 \mathrm{~dB}, \mathrm{~K}-\mathrm{B} 90 \mathrm{~dB}$ and $\mathrm{K}-\mathrm{B} 110 \mathrm{~dB}$)

Analysis bandwidth

Standard	10 Hz to 10 MHz
Option B25 (standard)	10 Hz to 25 MHz
Option B40	10 Hz to 40 MHz

IF frequency response (standard 10 MHz IF path)				
IF frequency response (demodulation and FFT response relative to the center frequency, 20 to $30^{\circ} \mathrm{C}$)				
Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS
< 3.6	≤ 10	N/A	$\pm 0.40 \mathrm{~dB}$	0.04 dB nominal
≥ 3.6	≤ 10	On		0.25 dB nominal
≥ 3.6	≤ 10	Off ${ }^{1}$	$\pm 0.45 \mathrm{~dB}$	0.04 dB nominal
> 26.5 (Option 532 or 544)	≤ 10	On		0.35 dB nominal
IF phase linearity (deviation from mean phase linearity, nominal)				
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS
< 3.6	≤ 10	N/A	$0.4{ }^{\circ}$	0.1°
≥ 3.6	≤ 10	Off ${ }^{1}$	$0.4{ }^{\circ}$	0.1°
≥ 3.6 (Option ≤ 526)	≤ 10	On	1.0°	$0.2{ }^{\circ}$
Data acquisition (10 MHz IF path)				

Time record length $I Q$ analyzer
4,000,000 IQ sample pairs
Sample rate at ADC

- Option DP2, B40 or MPB	$100 \mathrm{MSa} / \mathrm{s}$
	$90 \mathrm{MSa} / \mathrm{s}$

ADC resolution

- Option DP2, B40 or MPB

16 bits

- None of the above

14 bits

Option B25 (standard) 25 MHz analysis bandwidth

IF frequency response (demodulation and FFT response relative to the center frequency, 20 to $30^{\circ} \mathrm{C}$)

Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS
≤ 3.6	10 to ≤ 25	$\mathrm{~N} / \mathrm{A}$	$\pm 0.45 \mathrm{~dB}$	0.051 dB nominal
>3.6	$10 \mathrm{to} \leq 25$	On		0.45 dB nominal
>3.6	10 to ≤ 25	Off 1	$\pm 0.45 \mathrm{~dB}$	0.071 dB nominal
IF phase linearity (deviation from mean phase linearity, nominal)				
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS
$0.02 \leq \mathrm{f}<3.6$	≤ 25	$\mathrm{~N} / \mathrm{A}$	0.6°	0.14°
≥ 3.6	≤ 25	Off 1	1.9°	0.4°
≥ 3.6 (Option $\leq 526)$	≤ 25	On	4.5°	1.2°

[^3]| Data acquisition ($25 \mathrm{MHz} \mathrm{IF} \mathrm{path)}$ | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Time record length (IQ pairs) IQ Analyzer | 4,000,000 IQ sample pairs | | | |
| 89600 software | 32-bit packing | 64-bit packing | | Memory |
| Option DP2, B40 or MPB | 536 MSa | 268 MSa | | 2 GB |
| None of the above | 4,000,000 IQ sample pairs (independent of data packing) | | | |
| Sample rate at ADC | | | | |
| - Option DP2, B40 or MPB | $100 \mathrm{MSa} / \mathrm{s}$ | | | |
| - None of the above | $90 \mathrm{MSa} / \mathrm{s}$ | | | |
| ADC resolution | | | | |
| - Option DP2, B40 or MPB | 16 bits | | | |
| - None of the above | 14 bits | | | |
| Option B40 40 MHz analysis bandwidth | | | | |
| IF frequency response (demodulation and FFT response relative to the center frequency, 20 to $30^{\circ} \mathrm{C}$), nominal | | | | |
| Center frequency (GHz) | Span (MHz) | Preselector | Max. error | RMS |
| $0.03 \leq f<3.6$ | ≤ 40 | N/A | $\pm 0.3 \mathrm{~dB}$ | 0.08 dB |
| $3.6 \leq f \leq 26.5$ | ≤ 40 | Off ${ }^{1}$ | $\pm 0.25 \mathrm{~dB}$ | 0.08 dB |
| > 26.5 | ≤ 40 | Off ${ }^{1}$ | $\pm 0.25 \mathrm{~dB}$ | 0.12 dB |
| IF phase linearity (deviation from mean phase linearity, nominal) | | | | |
| Center frequency (GHz) | Span (MHz) | Preselector | Peak-to-peak | RMS |
| $0.02 \leq f<3.6$ | 40 | N/A | 0.2° | 0.05° |
| ≥ 3.6 | 40 | Off ${ }^{1}$ | 5° | $1.4{ }^{\circ}$ |
| Data acquisition ($40 \mathrm{MHz} \mathrm{IF} \mathrm{path} \mathrm{)}$ | | | | |
| Time record length (IQ pairs) IQ Analyzer | 4,000,000 samples (I/Q pairs) | | | |
| 89600 VSA software | 32-bit packing | 64-bit packing | 2 GB total memory (nominal) | |
| Length (IQ sample pairs) | 536 MSa | 268 MSa | | |
| Length (time units) | | | Samples/(span x 1.28) (nominal) | |
| Sample rate | | | | |
| - At ADC | $200 \mathrm{MSa} / \mathrm{s}$ | | | |
| - IQ pairs | | Span x 1.28 (nominal) | | |
| ADC resolution | 12 bits | | | |

[^4]
Related Literature

| Publication title | Publication number |
| :--- | :--- | :--- |
| X-Series Signal Analyzers - Brochure | $5992-1316 E N$ |
| N9010B EXA X-Series Signal Analyzer, Multi-touch - Configuration Guide | $5992-1253 E N$ |

For more information or literature resources please visit the web:

- Product page: www.keysight.com/find/N9010B
- X-Series measurement applications: www.keysight.com/find/X-Series_Apps
- X-Series signal analyzers: www.keysight.com/find/X-Series

Learn more at: www.keysight.com

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

[^0]: 1. Horizontal resolution is span/(sweep points - 1).
[^1]: 1. When Option MPB is installed and enabled, some aspects of the analyzer performance changes. Please refer to the EXA specification guide for more details.
[^2]: 1. Option MPB installed and enabled.
[^3]: 1. Option MPB is installed and enabled.
[^4]: 1. Option MPB is installed and enabled.
